翻訳と辞書 |
Circuit satisfiability problem : ウィキペディア英語版 | Circuit satisfiability problem In theoretical computer science, the circuit satisfiability problem (also known as CIRCUIT-SAT, CircuitSAT, CSAT, etc.) is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output true.〔(【引用サイトリンク】title=Lecture 7: NP-Complete Problems )〕 ==Properties== CircuitSAT has been proven to be NP-complete.〔(【引用サイトリンク】title=Notes for Lecture 23: NP-completeness of Circuit-SAT )〕 In fact, it is a prototypical NP-complete problem; the Cook–Levin theorem is sometimes proved on CircuitSAT instead of on SAT for Boolean expressions and then reduced to the other satisfiability problems to prove their NP-completeness.〔〔See also, for example, the informal proof given in Scott Aaronson's (lecture notes ) from his course ''Quantum Computing Since Democritus''.〕 The satisfiability of a circuit containing m arbitrary binary gates can be decided in time .〔(【引用サイトリンク】title=An O(2^) upper bound for Circuit SAT )〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Circuit satisfiability problem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|